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4. MATRIX 

 
4.1  MATRIX CONCEPT 

 The history of matrices goes back to ancient times! But the term "matrix" 

was not applied to the concept until 1850. "Matrix" is the Latin word for womb, 

and it retains that sense in English. It can also mean more generally any place in 

which something is formed or produced.  

 

The origins of mathematical matrices lie with the study of systems of simultaneous 

linear equations. An important Chinese text from between 300 BC and AD 

200, Nine Chapters of the Mathematical Art (Chiu Chang Suan Shu), gives the first 

known example of the use of matrix methods to solve simultaneous equations. 

In the treatise's seventh chapter, "Too much and not enough," the concept of a 

determinant first appears, nearly two millennia before its supposed invention by 

the Japanese mathematician Seki Kowa in 1683 or his German 

contemporary Gottfried Leibnitz (who is also credited with the invention of 

differential calculus, separately from but simultaneously with Isaac Newton). 

More uses of matrix-like arrangements of numbers appear in chapter eight, 

"Methods of rectangular arrays," in which a method is given for solving 

simultaneous equations using a counting board that is mathematically identical to 

the modern matrix method of solution outlined by Carl Friedrich Gauss (1777-

1855), also known as Gaussian elimination. 

The term "matrix" for such arrangements was introduced in 1850 by James Joseph 

Sylvester. In his 1851 paper, Sylvester wrote, "For this purpose we must 

commence, not with a square, but with an oblong arrangement of terms consisting, 

suppose, of lines and  columns. This will not in itself represent a determinant, 

but is, as it were, a Matrix out of which we may form various systems of 

determinants by fixing upon a number , and selecting at will  lines and 

 columns, the squares corresponding of th order."  

Because Sylvester was interested in the determinant formed from the rectangular 

array of number and not the array itself (Kline 1990, p. 804), Sylvester used the 

term "matrix" in its conventional usage to mean "the place from which something 

else originates" (Katz 1993). Sylvester (1851) subsequently used the term matrix 

informally, stating "Form the rectangular matrix consisting of rows and 

 columns.... Then all the  determinants that can be formed by rejecting any one 

column at pleasure out of this matrix are identically zero." However, it remained 
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up to Sylvester's collaborator Cayley to use the terminology in its modern form in 

papers of 1855 and 1858 (Katz 1993). 

Sylvester, incidentally, had a (very) brief career at the University of Virginia, 

which came to an abrupt end after an enraged Sylvester hit a newspaper-reading 

student with a sword stick and fled the country, believing he had killed the student! 

 Since their first appearance in ancient China, matrices have remained important 

mathematical tools. Today, they are used not simply for solving systems of 

simultaneous linear equations, but also for describing the quantum mechanics of 

atomic structure, designing computer game graphics, analyzing relationships, and 

even plotting complicated dance steps! 

The elevation of the matrix from mere tool to important mathematical theory owes 

a lot to the work of female mathematician Olga Taussky Todd (1906-1995), who 

began by using matrices to analyze vibrations on airplanes during World War II 

and became the torchbearer for matrix theory. 

In mathematics, a matrix (plural matrices) is a rectangular array 

of numbers, symbols, or expressions, arranged in rows and columns. The 

individual items in a matrix are called its elements or entries. An example of a 

matrix with 2 rows and 3 columns is 

 

 

 

4.2  Matri Operations 

 "Operations" is mathematician-ese for "procedures". The four "basic 

operations" on numbers are addition, subtraction, multiplication, and division.  

 

For matrices, there are three basic row operations; that is, there are three 

procedures that you can do with the rows of a matrix: 

(1) You can switch rows: For instance, given the matrix:    ...you can 

switch the rows around to put the matrix into a nicer row arrangement, like this: 
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 Row-switching is often indicated by drawing arrows, like this: 

 When switching rows around, be careful to 

copy the entries correctly. 

(2) Row multiplication:  For instance, given the following matrix: 

 ...you can multiply the first row by –1 to get a positive 

leading value in the first row: 

 

This row multiplication is often indicated by using an arrow with multiplication 

listed on top of it, like this: 

 

The "–1R1" indicates the actual operation. The "–1" says that we multiplied by 

negative one; the "R1" says that we were working with the first row. Note that the 

second and third rows were copied down, unchanged, into the second matrix. The 

multiplication only applied to the first row, so the entries for the other two rows 

were just carried along unchanged. 

You can multiply by anything you like. For instance, to get a leading 1 in the third 

row of the previous matrix, you can multiply the third row by a negative one-half: 
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Since you weren't doing anything with the first and second rows, those entries were 

just copied over unchanged into the new matrix. 

You can do more than one row multiplication within the same step, so you could 

have done the two above steps in just one step, like this: 

 

It is a good idea to use some form of notation (such as the arrows and subscripts 

above) so you can keep track of your work. Matrices are very messy, especially if 

you're doing them by hand, and notes can make it easier to check your work later. 

It'll also impress your teacher 

(3) Row addition: Row addition is similar to the "addition" method for solving 

systems of linear equations. Suppose you have the following system of equations: 

x + 3y = 1 

–x + y = 3 you could start solving this system by adding down the columns 

to      get 4y = 4:  

 You can do something 

similar with matrices. For 

instance, given the 

following matrix: 

 R 

...you can "reduce" (get more leading 

zeroes in) the second row by adding the first row to it (the general goal with 

matrices at this stage being to get a "1" — or "0's" and then a "1" — at the 

beginning of each matrix row). When you were reducing the two-equation linear 

system by adding, you drew an "equals" bar across the bottom and added down. 

When you are using addition on a matrix, you'll need to grab some scratch paper, 
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because you don't want to try to do the work inside the matrix. So add the two rows 

on your scratch paper: 

4.3  Inverse Matrix 

 In linear algebra, an n-by-n square matrix A is called invertible (also 

nonsingular or non-degenerate) if there exists an n-by-n square matrix B such 

that 

     

where In denotes the n-by-n identity matrix and the multiplication used is ordinary 

matrix multiplication. If this is the case, then the matrix B is uniquely determined 

by A and is called the inverse of A, denoted by A−1. 

A square matrix that is not invertible is called singular or degenerate. A square 

matrix is singular if and only if its determinant is 0. Singular matrices are rare in 

the sense that a square matrix randomly selected from a continuous uniform 

distribution on its entries will almost never be singular. 

Non-square matrices, (m-by-n matrices for which m ≠ n) do not have an inverse. 

However, in some cases such a matrix may have a left inverse or right inverse. If A 

is m-by-n and the rank of A is equal to n, then A has a left inverse: an n-by-m 

matrix B such that BA = I. If A has rank m, then it has a right inverse: an n-by-m 

matrix B such that AB = I. 

Matrix inversion is the process of finding the matrix B that satisfies the prior 

equation for a given invertible matrix A. 

While the most common case is that of matrices over the real or complex numbers, 

all these definitions can be given for matrices over any commutative ring; 

However, in this case the condition for a square matrix to be invertible is that its 

determinant is invertible in the ring, which in general is a much stricter 

requirement than being nonzero. The conditions for existence of left-inverse resp. 

right-inverse are more complicated since a notion of rank does not exist over rings. 
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4.4  Gauss-Jordan Method 

 Solving three-variable, three-equation linear systems is more difficult, at 

least initially, than solving the two-variable systems, because the computations 

involved are more messy. You will need to be very neat in your working, and you 

should plan to use lots of scratch paper. The method for solving these systems is an 

extension of the two-variable solving-by-addition method, so make sure you know 

this method well and can use it consistently correctly. 

Though the method of solution is based on addition/elimination, trying to do actual 

addition tends to get very messy, so there is a systematized method for solving the 

three-or-more-variables systems. This method is called "Gaussian elimination" 

(with the equations ending up in what is called "row-echelon form"). 

Let's start simple, and work our way up to messier examples: 

 Solve the following system of equations.  

5x + 4y – z = 0 

10y – 3z = 11 

z = 3 

It's fairly easy to see how to proceed in this case. I'll just back-substitute the 

z-value from the third equation into the second equation, solve the result for 

y, and then plug z and y into the first equation and solve the result for x. 

10y – 3(3) = 11 

10y – 9 = 11 

10y = 20 

y = 2 

5x + 4(2) – (3) = 0 

5x + 8 – 3 = 0 

5x + 5 = 0 

5x = –5 

x = –1 

Then the solution is (x, y, z) = (–1, 2, 3). 

The reason this system was easy to solve is that the system was "triangular"; this 

refers to the equations having the form of a triangle, because of the lower equations 

containing only the later variables.  
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The point is that, in this format, the system is simple to solve. And Gaussian 

elimination is the method we'll use to convert systems to this upper triangular 

form, using the row operations.   

 

 


